BASIC MATHEMATICS II (DECIMAL FRACTIONS)

EDITION

4

THE ARMY INSTITUTE FOR PROFESSIONAL DEVELOPMENT

ARMY CORRESPONDENCE COURSE PROGRAM

BASIC MATHEMATICS II (DECIMAL FRACTIONS) Subcourse Number QM 0114

EDITION 4

United States Army Quartermaster Center and School Fort Lee, Virginia 23801-6036

3 Credit Hours

CONTENTS

F	Page ii
Grading and Certification Instructions	iii
Lesson - Basic Mathematics II (Decimal Fractions)	1

Unless otherwise stated, whenever the masculine gender is used, both men and women are included.

INTRODUCTION

This subcourse is designed to train a soldier on basic mathematics II (decimal fractions). It will cover each part of the task and your responsibilities.

Supplementary Training Material Provided: None.

Materials to be Provided by the Student: No. 2 pencil and paper.

Material to be Provided by the Unit or Supervisor: None.

This subcourse cannot be completed without the above material.

Three credit hours will be awarded for successful completion of this subcourse.

LESSON

TASK:	Basic Mathematics II (Decimal Fractions). As a result of successful completion of this subcourse, you will be able to perform the following performance measures:
	1. Solve problems of addition, subtraction, multiplication, and division of numbers containing up to four decimal places.
	2. Convert percent to decimal fractions and decimal fractions to percent.
CONDITIONS:	Given this subcourse you will be able to do basic mathematics II (decimal fractions).
STANDARD:	You must answer 70 percent of the written exam questions correctly to receive credit for this subcourse.
CREDIT HOURS:	See page ii, Introduction.

IMPORTANT NOTICE

THE PASSING SCORE FOR ALL ACCP MATERIAL IS NOW 70%.

PLEASE DISREGARD ALL REFERENCES TO THE 75% REQUIREMENT.

LESSON TEXT

HOW TO USE THIS BOOKLET

This is not an ordinary text. It is a programmed text which is designed to help you apply the principles of decimal fractions. We will ask you to take part in the program by answering questions, filling in blanks, and performing fundamental mathematical computation.

As you will see, the programmed text is designed so that you may study the text and then test yourself immediately. Write your answers in this booklet. Writing each answer will help you remember the specific information you have learned. You can correctly answer all the questions in the programmed text because the programmed text gives you <u>all</u> the <u>correct answers</u>. The answers to the questions will be on the following page.

Fill in all the answers on each page. If you find that you have written a wrong answer, mark through the wrong answer, go back over the teaching point you missed; then write in the correct answer.

If you merely fill in the blanks in the programmed text without studying and working out the problems, you will be unprepared to answer the examination exercises that are located at the back of the booklet.

Remember, you will be graded on the examination exercises.

SEQUENCE II

DECIMAL FRACTIONS

You will now begin a review of decimal fractions. You will use them more frequently than the other type of fractions you have been using because they are easier to handle.

You use decimal fractions every time you use money; for example, \$0.50, \$0.25, \$0.10, \$0.05, \$0.01. You have added and subtracted money all of your life.

Decimal fractions are fractions written in a particular form. The denominator of the decimal fraction is always 10, 100, 1000 or some other multiple of 10. The fraction 1/10 is written as .1; 1/100 as .01; and 1/1000 as .001. The number of places to the <u>right</u> of the <u>decimal point</u> (.) shows the number of zeros in the denominator. Using this method, you write the fraction 875/1000 as .875. (3 zeros)(3 places to the right)

The decimal point (.) provides a simple way to write a number that contains both a <u>whole</u> <u>number</u> and a <u>fraction</u>. For example:

The mixed number 10 3/4 can be written as 10 75/100 or 10.75 as a decimal. The ______ separates the two parts--the <u>whole number</u> on the <u>left</u> and the <u>decimal</u> <u>fraction to the right</u>.

10.75 whole)(decimal number)(fraction

CONVERTING FRACTIONS TO DECIMALS

To work with decimals, you should know how to convert a fraction to a decimal.

REMEMBER: To convert a fraction to a decimal, you divide the <u>denominator</u> into the <u>numerator</u>.

1. Example: Convert 3/8 to a decimal. 3 is the <u>numerator</u>, 8 is the <u>denominator</u>.

You divide	into
(1) $3/8 = \frac{.375}{8/3.000}$	(2) 3/8 = .375
60	
<u>56</u>	
40	
<u>40</u>	

2. Example: Convert 1/4 of a dollar to a decimal.

You divide ______ into _____.

(1) 1/4 = 4/51.00 (2) 1/4 = \$

ANSWERS: 1. 8 into 3

2. 4 into 1, 1/4 =\$.25 or 25¢

READING AND WRITING DECIMALS

Now that you are able to convert a regular fraction into a decimal fraction, you should have no trouble in reading and writing decimals.

Just as there are names for the columns to the left of a decimal point, there are names for each column to the right of the decimal point.

LOOK AT THIS NUMBER: 6,703.472.

	Т	Н	Т	U		Т	Н	Т	
	h	u	e	n		e	u	h	
	0	n	n	it		n	n	0	
Here is the same	u	d	S	S		t	d	u	When you read a number
number with the	S	r				h	r	S	like this one, you say
name above each	a	e				S	e	а	"and" when you come to
	n	d					d	n	
	d	S					t	d	
	S						h	t	
							S	h	
								S	
column:	6,	7	0	3	,	4	7	2	the decimal point.

When you read the part of the number to the <u>right</u> of the decimal point, you use the name of the <u>last</u> column to the right. For example, the number above is read:

Six thousand, seven hundred three <u>and</u> four hundred and seventy two <u>thousandths</u>. (There are three numbers to the right of the decimal point, so you use the name of the third column - thousandths.)

The number 243.78 would be read:

Two hundred forty three <u>and</u> seventy-eight <u>hundredths</u>. (There are only two numbers to the right of the decimal point.)

HOW WOULD YOU READ THESE NUMBERS?

(1) 24,019.7 Twenty four thousand, nineteen <u>and</u> seven_____

(2) 313.296 Three hundred thirteen <u>and</u> two hundred ninety-six_____.

ANSWERS: (1) tenths

(2) thousandths

This chart shows the names given to the columns to the <u>right</u> of the decimal point (note the spelling).

Т	Н	Т	Т	Н	Μ
e	u	h	e	u	ill
n	n	0	n	n	io
t	d	u	-	d	n
h	r	S	Т	r	t
S	e	a	h	e	h
	d	n	0	d	S
	t	d	u	-	
	h	t	S	Т	
	S	h	a	h	
		S	n	0	
			d	u	
			t	S	
			h	а	
			S	n	
				d	
				t	
				h	
				S	
↑	↑	↑	↑	↑	1
.3	4	6	8	5	9

Another reference chart is on page iii of Volume I. Remember to say "and" each time you come to the decimal point.

Now practice:

- 1. The number 7.24 is read seven ______ twenty-four hundredths.
- 2. How would you read these numbers: (Write out in words.)
 - a. 421.7 ______ and _____.
 - b. 24.784 ______ and _____.
 - c. 1.2418 ______ and _____.

ANSWERS: 1. "and"

- 2. a. Four hundred twenty-one and seven tenths.
 - b. Twenty-four and seven hundred eighty-four thousandths.
 - c. One and two thousand four hundred eighteen ten-thousandths.

ADDING AND SUBTRACTING DECIMALS

Decimals are added and subtracted in the same way as whole numbers, but you have to be careful to keep the decimal points lined up.

- 1. a. To add: .603 + 1.09, we must the decimal points.
 - b. .603 + 1.09

the decimal points are

2. a. To subtract: 9.6241 - .012, we would line up the ______.

b. 9.6241 - .012

The ______ are lined up.

ANSWERS: 1. a. line up

b. lined up

2. a. decimal points

b. decimal points

We may place zeros after the last number in a decimal without changing its value.

The <u>value</u> of a decimal is not changed when we place ______ after the last number in the decimal.

If we place a zero after the "4" in .64 and make it .64<u>0</u>, have we changed the <u>value</u> of the decimal? (Yes or No)_____

Since placing zeros after the last number in a decimal does not change its ______, we may use these zeros to make our addition or subtraction example clearer:

.65) .912) .9) + .47)	becomes	.64 <u>0</u> .912 .9 <u>00</u> + .47 <u>0</u>
(do not add)		(do not add)

ANSWERS:	Zeros
	No
	Value

Using zeros is most helpful when adding long columns of decimals.

- 1. Fill in the zeros and do the following addition:
 - .9) 1.01) .624) becomes .091) 2.4) <u>+ 3.0124</u>)

+

2. Fill in the zeros and do the following subtraction:

99.1 <u>- 98.0472</u>

ANSWERS: (1)	.9000	(2)	99.1000
	1.0100		<u>- 98.0472</u>
	.6240		1.0528
	.0910		
	2.4000		
	+ 3.0124		
	8.0374		

REVIEW OF ADDING AND SUBTRACTING DECIMALS

- 1. In adding or subtracting decimals, we must remember to______ the decimal points.
- 2. We may place ______ after the last number in a decimal to make the example clearer to add or subtract.
- 3. Placing a zero after the last number in a decimal changes the <u>value</u> of the decimal. (True or False)._____
- 4. Do the following examples by ______ the decimal points and then placing zeros to make the example clearer:
 - a. .9 + 1.0023 + 9.12 + .0401 =
 - b. 101.12 .64092 =
 - c. 1.011 + .81 + .9 + 2.10111 =

ANSWERS:	1. line up	4.a.	.9000	b.	101.12000
	-		1.0023		<u>64092</u>
	2. zeros		9.1200		100.47908
			<u>+ .0401</u>		
	3. false		11.0624	с.	1.01100
					.81000
	4. lining up				.90000
					+ 2.10111
					4.82211

Now, if you were able to answer all of the questions on page 10 without any mistakes, you have done well with adding and subtracting decimals.

Which of the following statements describes you best?

I made some mistakes and would like some more practice. (Turn to page 12) I understand how to add and subtract decimal fractions. (Turn to page 14)

EXTRA PRACTICE IN ADDING AND SUBTRACTING DECIMALS

ADDITION

(1)	\$ 9.85	(2)	135.48	(3)	.34	(4)	16.385	(5)	3.5
	1.75		74.87		8.67		8.007		.037
	+ 3.65		7.73		14.03		.3		25.63
			<u>+ 9.04</u>		<u>+ .38</u>	:	+ 71		<u>+ 3.0385</u>

- (6) 54.372 + 16.8 + 111.301 + .007 =
- (7) 99.009 + .003 + 103 + 5.32 =

(8) 932.04 + 93.204 + 9.3204 + .93204 =

SUBTRACTION

(1)	85.2 - 63.132 =	(2) 4.837 - 2 =	(3) \$5.0089 =
	85.200 (0's were <u>- 63.132</u> added)	4.837 <u>- 2.000</u> (0's were added)	\$5.00 <u>89</u>

(4) 67.9 - 32.5=

(6) 46.004 -17.685 =

(7) You receive \$1.20 an hour for hauling pipe and \$1.10 for fittings. What is the total amount received from an 8-hour day if half was spent in hauling pipe and half In hauling fittings?

(5) 627.88 - 182.39 =

(8) You bought 30 barrels of oil at a price of \$14.60 per barrel, and sold it at a price of \$9.75 per half barrel. How much profit did you receive?

(ANSWERS ON PAGE 13)

ANSWERS:

ADDITION

(1)	\$ 9.85 1.75 <u>+ 3.65</u> \$15.25	(2) 1 $\frac{+}{2}$	35.48 74.87 7.73 <u>9.04</u> 27.12	(3) 	.34 8.67 14.03 <u>38</u> 23.42	(4)	$16.385 \\ 8.007 \\ .300 \\ + 71.000 \\ 95.692$	(5) ±	3.5000 .0370 25.6300 <u>3.0385</u> 32.2055
(6)	$54.372. \\ 16.800 \\ 111.301 \\ + .007 \\ 182.480$	(7) ±	99.009 .003 103.000 <u>5.320</u> 207.332	((8) +	932.04000 93.20400 9.32040 .93204 1035.49644			

SUBTRACTION

(1)	85.200	(2)	4.837	(3)	\$5.00	(4)	67.9
	<u>- 63.132</u>		<u>- 2.000</u>		<u>89</u>		<u>- 32.5</u>
	22.068		2.837		\$4.11		35.4
(5)	627.88	(6)	46.004	(7)	\$4.80		
	- 182.39		<u>- 17.685</u>		+ 4.40		
	445.49		28.319		\$9.20		

(8) \$19.50 - 14.60

4.60

4.90 profit per bbl 4.90 x 30 = \$147.00 total profit

MULTIPLYING DECIMALS

When you multiply decimal fractions or mixed decimals, you use the same procedure as for whole numbers. Then you locate the position of the decimal point.

If you were working on a job at a salary of \$1.50 per hour, how much money would you make if you worked 48 hours?

\$ 1.50 Salary <u>48</u> Number of hours worked <u>12 00</u> <u>60 0</u> \$72.00 Pay

You will receive \$72.00 for 48 hours work. Let's see how you solve this problem.

First, write the mixed decimal.	\$1.50	Fifth, count the number of
		digits to the right of the
<u>Second</u> , put the whole number	48	decimal point in numbers
under it.		being multiplied. (2)
	12 00	
Third, multiply.	<u>60 0</u>	
	\$72 00	Sixth, mark off the same
Fourth, find the product.		number of digits from the
-	two places	right in your answer.

To find <u>how many decimal places</u> there will be in the <u>answer</u> in a multiplication problem, count the number of digits to the ______ of the decimal point in the numbers being multiplied.

DETERMINING THE NUMBER OF DECIMAL PLACES

Again, remember to count the number of digits to the <u>right</u> of the decimal point in <u>both</u> numbers being multiplied.

Example 1:

9.434 - - - number of digits to right of decimal = 3 <u>x .54</u> - - - number of digits to right of decimal = 2

Total = 5

The answer will have 5 decimal places.

Example 2:

34.5678 - - number of digits to right of decimal = 4 <u>x .323</u> - - number of digits to right of decimal = ____

Total =

The answer will have ______ decimal places.

Example 3:

567.99 - - - number of digits to right of decimal = x = .23 - - number of digits to right of decimal = ____

Total =

The answer will have ______ decimal places.

ANSWERS: Example 1: 5 Example 2: 7 Example 3: 4

For each of the following examples, state the number of decimal places there will be in the answer.

Do not do the multiplication.

1) 99.62) <u>x .04</u>)	(number of decimal places in answer)
2) 1964.1) <u>x .009</u>)	(number of decimal places in answer)
3) .0091) <u>x .375</u>)	(number of decimal places in answer)

ANSWERS:	1. 4
	2. 4
	3. 7

LOCATING THE DECIMAL POINT IN THE ANSWER

After determining the number of decimal places there will be in the answer, we multiply and locate the decimal point.

We locate the decimal point in the answer by starting at the last digit on the <u>right</u> and counting to the left.

Example 1:

9.642)	
<u>x .31</u>)	number of decimal places in answer
9642	
28926	
29.8902	
<u>ተተተ</u>	
4321	

We start at the <u>right</u> and count $\underline{4}$ places to the left.

Start at the _____ and count _____ places to the _____. Locate the decimal point. The answer should read: _____.

ANSWERS: 1. 4

2. 5

Right, 5, Left, 1.92374

Do the following multiplication and locate the decimal point in the answer.

(1)	2 3.4 5	(2)		09094
	<u>x .1 2 2</u>		X	2.3 6

(3)	1 1 7.5	(4)	1.3 5 7
	<u>x .55</u>		<u>x .011</u>

ANSWERS:

(1)	2 3.4 5 <u>x .1 2 2</u> 4 6 9 0	2 <u>3</u> 5 decimal	(2)	.0 9 0 9 4 x 2.3 6 5 4 5 6 4	2 <u>5</u> 7 decimal
	$ \begin{array}{r} 4 6 9 0 \\ \underline{2 3 4 5} \\ 2.8 6 0 9 0 \end{array} $	places		27282 <u>18188</u> .2146184	places
	54321			7654321	
(3)	$ \begin{array}{r} 1 1 7.5 \\ \underline{x} .5 5 \\ 5 8 7 5 \\ \underline{5 8 7 5} \\ 6 4.6 2 5 \end{array} $		(4)	$ \begin{array}{r} 1.3 5 7 \\ \underline{x} .0 1 1 \\ 1 3 5 7 \\ \underline{1 3 5 7} \\ .0 1 4 9 2 7 \end{array} $	

places.

Zero must be added for six

You should understand how to solve multiplication problems containing decimals and be able to locate the decimal point in the answer correctly.

Pick the statement that describes you best.

I would like to try more decimal multiplication problems (Turn to page 20)

I understand the multiplication of decimals. (Turn to page 22)

EXTRA PRACTICE IN MULTIPLICATION OF DECIMALS

Solve t	he following:		
(1)	1.6 2 9 <u>6.5</u>	(2)	.106 .018
(3)	1 1.7 <u>1 2.3</u>	(4)	5 0 0 <u>2.8 4</u>
(5)	3 6.4 <u>3.5</u>	(6)	3.1 4 <u>.1 4</u>

(7) Find the total charged for 8 hours labor if the hourly rate is \$2.25 per hour?

(8) If a certain type of finished steel plates is 0.36 inches thick, how many feet high is a pile of 250 of them?

ANSWERS:

(1)	$ \begin{array}{r} 1.6 2 9 \\ x \underline{ 6.5} \\ 8 1 4 5 \\ \underline{ 9774} \\ 1 0.5 8 8 5 \end{array} $	3 1 4 places	(2)	$ \begin{array}{r} .106\\ x \underline{.018}\\ 848\\ \underline{106}\\ .001908\\ 654321 \end{array} $	3 <u>3</u> 6 places
(3)	$ \begin{array}{r} 1 \ 1.7 \\ x \ \underline{12.3} \\ 3 \ 5 \ 1 \\ 2 \ 3 \ 4 \\ \underline{117} \\ 1 \ 4 \ 3.9 \ 1 \\ \end{array} $		(4)	$500 \\ x 2.84 \\ 2000 \\ 4000 \\ 1000 \\ 1420.00$	
(5)	3 6.4 x <u>3.5</u> 1 8 2 0 <u>1 0 9 2</u> 1 2 7.4 0		(6)	3.1 4 x <u>.14</u> 1 2 5 6 <u>3 1 4</u> .4 3 9 6	
(7)	\$ 2.2 5 x <u>8</u> \$ 1 8.0 0		(8)	$ \begin{array}{r} 0.3 \ 6 \\ x \ \underline{2 \ 5 \ 0} \\ 1 \ 8 \ 0 \ 0 \\ \underline{7 \ 2} \\ 9 \ 0.0 \ 0 \end{array} $	inches
			12 in v	$ \begin{array}{r} 7.5 & \text{or } 7 \ 1/2 \\ \hline 9 \ 0.0 \ 0 & \text{inches} \\ \underline{8 \ 4} \\ 6 \ 0 \\ \underline{6 \ 0} \\ \end{array} $	t ft high 2

DIVIDING DECIMALS

Decimals are divided the same way you divided whole numbers earlier in the text, but with one additional step: The <u>decimal point must be located</u> in the proper place <u>in the quotient</u>.

Remember what the quotient is?

Here is a diagram showing the terms used in division.

Quotient_ Divisor Dividend

Quotient is the answer you get when you divide.

The decimal point must be accurately located for the quotient to he correct.

The only difference between the numbers <u>102.50</u> and <u>10.250</u>, is the location of the decimal point. But if you were getting \$10.25 pay instead of \$102.50, you would consider the location of that decimal point very important. Try these two problems for practice to see if you know how to divide using decimals:

(1) .32 76.8

(2) Divide 127.4 by .035

ANSV	VERS	•
		240
(1)	.32	76.80
		<u>64</u>
		1280
		<u>1280</u>
	、 _	3640
(2)	.035	127.400
		<u>105</u>
		224
		<u>210</u>
		1400
		<u>1400</u>

If you had no difficulty with these two problems and feel you understand division of decimals, then skip to page 32.

If you feel you need additional practice and a quick review, turn to page 25.

LOCATION OF THE DECIMAL POINT

1. A DECIMAL DIVIDED BY A WHOLE NUMBER.

3.46	
14) 48.44	
<u>42</u>	This division is very easy. You simply divide as in whole
64	numbers and place the decimal point in the <u>quotient</u> above
<u>56</u>	the decimal point in the <u>dividend</u> .
84	
<u>84</u>	

2. A DECIMAL DIVIDED BY A DECIMAL.

、—	34.6	This division sometimes causes trouble. The first thing to
1.4)	48.44	do is to make the divisor a whole number. Then move the
	<u>42</u>	decimal point in the dividend the same number of places to
	64	the right as you moved it in the divisor.
	<u>56</u>	
	84	Now the division is the same as the easy problem #1.
	<u>84</u>	

NOW, YOU DO THIS ONE:

3.14 125.6

ANSWER:

CHANGING THE DIVISOR TO A WHOLE NUMBER

Remember, if the <u>divisor</u> is a decimal, we change it to a <u>whole number</u> by moving the decimal point all the way to the right.

Change the following divisors to whole numbers by moving the decimal point all the way to the

(1)	.80	becomes	86.)
(2)	9.2	becomes)
(3)	.132)	becomes)

.

ANSWERS:	Right	
	(1)	86)
	(2)) 92.
	(3)) 132.

REVIEW OF LOCATING THE DECIMAL POINT

1. Write these terms in their proper places in the diagram:

(Check your answer on the next page. If you are incorrect, change it.)

Whenever we move the decimal point in a <u>divisor</u>, we must also <u>move</u> the <u>decimal point</u> in the dividend.

2. If we move the decimal point in the divisor, we must also move it in the_____.

We must move the decimal an equal number of places in the divisor and the dividend.

3. If we move the decimal in the divisor two places, then we must move the decimal in the dividend _______ places.

(1) Divisor Dividend

(2) Dividend

(3) Two

Move the decimal point in the divisor to make it a whole number. Then move the decimal in the dividend an equal number of places.

.84) 98.62

(1) We make .84 a whole number by moving the decimal point_____places to the _____.

.84) 98.62

(2) Then we move the decimal point in the ______ places to the

.84) 98.62

Set up the decimal points in the following example by first making the divisor a whole number.

.012) 3.2645 becomes)

(1) 2, right
(2) Dividend, 2, right
(3) 12 3264.5

LOCATING THE DECIMAL POINT IN THE QUOTIENT

Once we have made the divisor a whole number and also moved the decimal in the dividend, we locate the decimal point in the <u>quotient</u>.

The decimal point in the <u>quotient</u> is always <u>directly above</u> the decimal point in the <u>dividend</u>.

26.) 78.36

Place the decimal point in the <u>quotient</u> of these examples:

(1) 89? 193.4

(2) 5) 5.62

ANSWERS:

(1)) 193.4

(2)) 5.62

REVIEW OF DIVIDING DECIMALS

In order to divide decimals, we must:

(1) Make the divisor a	by	moving th	ne decimal	all
the way to the				

(2) Move the decimal in the ______ the same number of places that we moved it in the divisor.

(3) Place the decimal point in the <u>quotient</u> directly ______ the decimal in the ______.

Set up the decimals in the following examples according to the above three steps. Then divide.

(1) 7.6 3.192

(2) .023 368.0

(3) .0012 14.40

(ANSWERS ON NEXT PAGE)

ANSWERS:

(1)	Whole number Right
(2)	Dividend
(3)	Above Dividend
PROBLEM SOLUT	FIONS:

42 7.6 76 31.92 3.192 (1) = 16000 368.0 .023) (2)023 368000. =12000 .0012) 14.40 (3) 0012) 144000. =

You should now be able to solve division problems containing decimals and be able to locate the decimal point in the quotient.

Select the statement that describes you best.

I would like to try some more decimal division problems for practice. (Turn to page 32.)

I understand decimal division well enough.

(Turn to page 34.)

EXTRA PROBLEMS IN DIVIDING DECIMALS

(1)	4 3 9 2 ÷ 7.2	(2)	8)	45.0
(3)	.8 7 5 ÷ 0.5	(4)	33	2893
(5)	3 2.4 5 ÷ 1 0 0 0	(6)	28	196.084

(7) If 18.5 feet of 1 1/2-inch pipe weighs 50.32 lb, what is the weight per foot of this pipe?

(8) A 5/16-inch screw weighs 0.024 lb. Now many of these screws are in a box labeled "net weight 1.25 lb"?

(9) A double-acting single-cylinder steam pump makes 32 strokes per minute and delivers 46.976 gallons per minute. Row much does it pump at each stroke?

ANSWERS:

	、 —	610		5.625
(1)	7.2)	4392.0	(2)	8 45.000
. ,		432		40
		72		50
		72		48
		<u>12</u>		20
				16
				<u>10</u> 40
				40
				<u>40</u>
		1 75		07.66
$\langle 0 \rangle$	م <u>د</u>)	_1./5		84.00
(3)	0.5^{\prime}	.8/5	(4)	33 2893.0
		<u>5</u>		<u>264</u>
		37		253
		<u>35</u>		<u>231</u>
		25		220
		<u>25</u>		<u>198</u>
				220
				198
				22
		.03245		_7.003
(5)	1000	32.45000	(6)	28 196.084
(-)		3000		196
		2450		084
		2000		84
		<u>2000</u> 4500		<u>0-</u>
		4000		
		<u>4000</u> 5000		
		5000		
		<u>5000</u>		
		272 lh		52 0.02 000000
(7)	10	<u>2.12_10</u>	(9)	52.065 sciews
()	10.3	30.32	(8)	.024 1.2300
	_	<u>1468_gallons</u>		
(9)	$(32)^{-1}$	46 976		
$\langle \mathcal{I} \rangle$	54	10.770		

READING DECIMALS

By "reading" decimals, we mean using the terms "tenths," "hundredths," etc.

We do not read decimals as "point' something.

For example, .65 is ready "65 hundredths," not "point 65."

Here is a handy method for reading decimals.

- (1) Place a "1" above the decimal point.
- (2) Place a zero above each digit appearing to the right of the decimal point.

The "1" and "zeros" tell you what to read.

Example: Read .682.

(1) We place a ______ above the decimal point:

1 .682

(2) Then we place a ______ above each digit to the right of the decimal point:

1000 .682

The 1 and the three zeros make 1000.

So we read .682 as 682 "thousandths."

(3) How would you read .74?

100 .74 (1) 1

(2) Zero

(3) Seventy-four hundredths

ROUNDING OFF DECIMALS

When rounding off decimals, the rule is that if the decimal is 4 or less you round down to zero and if the decimal is 5 or more you round up to the next higher number.

Example 1: Round off 109.6536 to two decimal places.

(1) You look at the third decimal which is 3 and apply the rounding off rule.

(2) Since 3 is "4 or less," you round down to zero; this will not affect the preceding decimal.

(3) The answer, therefore, would be 109.65.

Example 2: Round off 109.2721 to one decimal place.

(1) You look at the second decimal which is 7 and apply the rounding off rule.

(2) Since 7 is "5 or more," you round up to the number 10 which will carry over to the preceding decimal and increase it by 1.

(3) The answer, therefore, would be 109.3.

NOTE: Rounding off a one-decimal number would carry back to the whole number: 96.5 would be 97, but 96.3 would be 96. Now, you round off some decimals.

(1) Round off decimals to two decimal places.

64.6581 1648.1243

(2) Round off decimals to one decimal place.

691.9265 76.2725

(3) Round off the following numbers.

54.3 68.9 (1) 64.66, 1648.12
 (2) 691.9, 76.3
 (3) 54, 69

CONVERTING DECIMALS TO PERCENT

Everyone uses percent (2) but how many really understand what they are talking about? You have seen percent used in many things. The interest paid by banks is in percent. Taxes are determined as a percent of certain other figures, and the clothing you are now wearing is probably 85% cotton and 152 wool.

Meaning of Percent

If a class has 100 men in it and 5 men get promoted to PFC, we say that 5X of the class got promoted.

Percent means "per hundred."

The symbol that is used for percent is Z. It is used just as the symbol \$ is for dollars.

To <u>convert</u> a <u>decimal</u> to a <u>percent</u>, we move the decimal point two places to the <u>right</u>. Then add the X sign.

 1. To convert .89 to a percent, we move the decimal point ______ places

 to the ______ and add the ______ sign.

.89 89. (first move decimal) - 89% (then add percent sign)

2. Example: Convert .455 to a percent

Move the decimal point ______ places to the right

(do it) .455 and add the % sign.

.455 =_____

ANSWERS:

(1) 2, right, %

(2) .455 - 45.52

to the	and adding a	sign.
(1) 11.2 =		
(2) 3.462 =		
(3) .00501 =		
(4) 64 =		
(5) 0.05 =		

ANSWERS: 2 places, right, percent

(1) 1120%

(2) 346.2%

(3) .501%

(4) 6400%

(5) 5%

CONVERTING PERCENT TO DECIMALS

To convert a percent (%) to a decimal, we <u>move</u> the <u>decimal point two places</u> to the <u>left</u> and <u>drop</u> the $\frac{6}{2}$ sign.

 $12.5\% = .12 \ 5\% = .125$

(2) Example: Convert 19.3% to a decimal.

.

Move the _____ places to the _

Then ______ the percent sign.

19.3% =

NOTE: If the percent does not have at least <u>two digits</u> to the <u>left</u> of the decimal point, put in zeros before proceeding.

Example: Change .5% to a decimal.

There are no digits to the left of the decimal point.

We need two digits there.

So we write .5% as 00.5% and then convert:

00.5% = .005

ANSWERS:

- (1) 2, left, %
- (2) decimal point, 2, left drop .193

Example: Convert 2.3% to a decimal.

There is only <u>one</u> digit to the left of the decimal point.

We need two digits there.

So we write 2.3% as 02.3%.

Then we convert:

02.3% =

Write the following percents as decimals.

(1) 21%	=
(2) 2.1%	=
(3) .21%	=
(4) .05%	=
(5) 172%	=
(6) 5%	=
(7) 37.65%	=

ANSWERS:	.023
(1) .2	21
(2) .0)21
(3) .0	0021
(4) .0	0005
(5) 1	.72
(6) .0)5
(7) .3	8765

PERCENT OF A NUMBER

To find a percent of some number, we change the percent to a decimal and multiply.

To find 12.5% of 128, we would change 12.5% to a _____ and then

Changing 12.5% to a decimal = .125.

(If you do not know how to change a percent to a decimal, see page 38.)

Now that we have converted 12.5% to the decimal .125, we are ready to_____

 $\begin{array}{c}
128 \\
\underline{x \ .125} \\
640 \\
256 \\
\underline{128} \\
16.000
\end{array}$ 12.5% of 128 = 16.00

ANSWERS:

decimal multiply multiply

In petroleum operations, you must use percentages in figuring inventories of bulk product on hand. One of these is:

1/2 of 1% = ?

You know that to change 12 to a decimal, you must move the <u>decimal</u> point two places to the <u>left</u> and <u>drop</u> the % sign.

Step 1: 1% = .01

Now divide .01 in half: $\frac{.01}{2}$

Step 2:

 $2 \frac{.005}{.010}$ $2 \frac{.000}{.00}$ 10 1010

Another common percentage that you will use is:

Solve the following problem:

If a tank holds 2,500 gallons, what is 1/2 of 12 of the total gallons in the tank?

$$1/2 \text{ of } 1\% = .005$$
 2500
x .005
gallons

ANSWERS: .005

.01

2500 <u>x .005</u> 12.500 gallons

REVIEW OF PERCENT AND CONVERTING TO DECIMALS

•

To find 5% of 200, we change ______ to a decimal.

5% =_____

Then we multiply ______ x

200 <u>x</u>.

(Answer on next page.)

Do the following problems.

(1) .25% of 25 =_____

(2) 135% of 200 =_____

(3) 1/4 of 1% of 900 gallons =_____

(4) 1/2 of 1% of 300 gallons =_____

ANSWERS:	5%
	.05
	.05 x 200
	200 <u>x .05</u> 10.00

(1) .25% of $25 = .0025 \text{ x } 25 = \underline{.0625}$	25
	<u>x .0025</u>
	125
	50
	.0625
(2) 135% of $200 = 1.35 \ge 200 = 270.00$	1.35
	x 200
	270.00

(3) $1/4$ of 1% of 900 gallons = .0025 x 900 = <u>2.25 gallons</u>	.0025
	<u>x 900</u>
	2.2500

(4) $1/2$ of 1% of 300 gallons = .005 x 300 = <u>1.5 gallons</u>	.005
	<u>x 300</u>
	1.500