EDITION A

AC THEORY, RELATED MATHEMATICS, AND THE GENERATION OF A SINE WAVE

Subcourse Number IT0350

EDITION A

US ARMY INTELLIGENCE CENTER FORT HUACHUCA, AZ 85613-6000

3 Credit Hours

Edition Date: May 1998

SUBCOURSE OVERVIEW

This subcourse is designed to teach you the concepts of analyzing AC circuits.

This subcourse replaces SA 0736.

There are no prerequisites for this subcourse.

TERMINAL LEARNING OBJECTIVE:

- ACTION: You will solve for an unknown side of a right triangle using trigonometric functions and Pythagorean theorem, determine the angles of a right triangle using trigonometric functions, plot a sine wave, determine the magnitude of the x and y-vectors for a given angle, and relate coordinate notation and vectors to sine waves.
- CONDITIONS: Given trigonometric tables and appropriate information about the lengths of sides of triangles, magnitude of vectors, and angles of vectors.
- STANDARDS: All calculations are performed correctly to one decimal place.

TABLE OF CONTENTS

TABLE OF CONTENTS

Section	<u>Page</u>
Subcourse Overview	i
Administrative Instructions	iii
Grading and Certification Instructions	iii
Lesson: AC Theory, Related Mathematics and the Generation of a Sine Wave	1-1
Table of Natural Functions	E-1
Student Inquiry Sheet	

LESSON 1

OVERVIEW

LESSON DESCRIPTION: Upon completion of this subcourse, you will be able to mathematically calculate how an AC circuit is designed to operate and locate problems in the circuit. You will use simple trigonometric functions, the Pythagorean theorem, and work with coordinates, axes, and vectors.

TERMINAL LEARNING OBJECTIVE:

- ACTION: You will solve for an unknown side of a right triangle using trigonometric functions and Pythagorean theorem, determine the angles of right triangle using trigonometric functions, plot a sine wave, determine the magnitude of the x and y-vectors for a given angle, and relate coordinate notation and vectors to sine waves.
- **CONDITION:** Given trigonometric tables and appropriate information about the lengths of sides of triangles, magnitude of vectors, and angles of vectors.
- **STANDARD:** All calculations are performed correctly to one decimal place.

INTRODUCTION

A.C. circuits work differently than D.C. circuits. You will learn how to calculate and monitor the operation of a circuit. In troubleshooting an electronic piece of equipment, you need a good understanding of what is supposed to happen, and what is actually happening. By mathematical calculations, you will figure what is supposed to happen, and by using test equipment, you can determine what is actually happening.

Correct responses are in this	1.	Many	electrica	al pr	oblems	can	be	solved
column for the previous frame		mathen	natically.	The F	RIGHT T	RIANGI	LE is a	a useful
		tool for	solving p	roblem	ns in altei	rnating	curren	it.
	2.	Review	these	facts:	Right t	riangles	s hav	e ONE
		RIGHT	ANGLE.	A rig	ht angle	contair	is exa	ctly 90°
		(ninety	degrees). То	qualify a	as a rig	pht tria	angle, a
		triangle	must ha	ve one	e angle of	fexactly	/	
		degree	S.					
2. 90°	3.	Which o	of these t	riangle	es are rigl	ht triang	gles?	
	(Cir	cle a., b.	, or c.)					4
	1				80			45
		30		/		7	/	
		1203	30	45	<u>+ 1</u>	55	45	90°
			a.		b.		C).
3. c.	4.	What i	s the o	ne reo	quiremen	it whic	h qua	lifies a
		triangle	as a righ	nt triang	gle?			
		(Write y	our answ	ver in t	he space	e below.)	

4. It must have one right angle.	5.	Solving problems that involv	ve right angles requires	
(or)		some method of identifying	the sides and angles.	
It must have one angle of 90° .		The longest side of a right triangle is the hypotenuse		
		(pronounced hi-pot'n-oos).	The hypotenuse of a	
		right triangle is the	side.	

 The hypotenuse of a right triangle is the line that forms the side opposite the right angle. See the drawing below.

6.	7.	The altitude of a right triangle is the line that forms
		one side of the right angle and extends vertically (up
		or down) to intersect the hypotenuse. In a right
		triangle, the vertical line that forms one side of the
		right angle and intersects the hypotenuse is
		the

1-4

15b.	16.	In the 6th century, a Greek, named Pythagoras,
		discovered the sides of a right triangle have a
		definite relationship to each other. That relationship
		is stated as follows:
		THE SQUARE OF THE HYPOTENUSE IS EQUAL
		TO THE SUM OF THE SQUARES OF THE OTHER
		TWO SIDES.
		The sum of the squares of the base and the altitude
		of a right triangle is equal to the square of the
		·
16. hypotenuse	17.	Let's review. The basic formula for the Pythagorean
		theorem is stated:
		a^2 + b^2 = c^2 .Variations of the basic formula permit
		solution for the unknown side of right triangles when
		ANY TWO sides are known.
To solve for <u>hypotenuse</u> , when base and altitude are known.		$c = \sqrt{a^2 + b^2}$
To solve for <u>altitude</u> , when base and hypotenuse are known.		$a = \sqrt{c^2 - b^2}$
To solve for <u>base</u> , when altitude and hypotenuse are known.		$b = \sqrt{c^2 \cdot a^2}$

(CONTINUE THIS FRAME ON NEXT PAGE)

22. a. 24.0 b. 12.72 c. 10.0	23. You will use vector in your study of A.C. to express electrical quantities.A VECTOR can be defined as a straight line that indicates both magnitude and direction of a quantity. The straight line below has a definite length and is pointing in a definite direction.
	This line is a
23. vector	24a. A vector indicates both MAGNITUDE and DIRECTION of a quantity. The length of a line indicates the of the quantity.
24a. magnitude	24b. The arrowhead indicates the of the quantity.
24b. direction	25. A vector is a line that indicates both and of a quantity.
25. straight magnitude direction	 26. Select, from the list of statements below, the statement that best describes a vector. a. A vector is a straight line that indicates both size and distance of a quantity. b. A vector is a straight line that indicates both direction and angle of a quantity. c. A vector is a straight line that indicates both magnitude and direction of a quantity.

26. c 27a. Vectors must be used with a known reference. By using coordinate lines, we can establish a known reference for vectors. A complete coordinate system consists of two perpendicular lines that cross each other at a point called the zero point. (Refer to figure A below.) The zero point is also called the POINT OF ORIGIN. All vectors will start from this point. The horizontal and vertical lines that pass through this point of origin are known as the "X" and "Y" AXES. Both the X and Y axes are divided at the zero point into positive and negative values. The horizontal line is the X axis. all values to the RIGHT of the zero point are POSITIVE (+); all values to the LEFT are NEGATIVE (-). The vertical line is the Y axis. All values above the zero point are positive, while values below are negative. Figure B below shows the labeling of the two axes in the coordinate system.

1-14

	27a. Cont.
	The horizontal line passing through the point of origin
	is labeled the
27a. X axis	b. The values on the X axis to the RIGHT of the zero
	point are
27b. positive (+)	c. The values on the X axis to the LEFT of the zero
	point are
27c. negative (-)	d. The vertical line passing through the zero point is
	labeled the
27d. Y axis	e. Values on the Y axis BELOW the zero point are
27e. negative (-)	f. Values on the Y axis ABOVE the zero point are
	·
27f. positive (+)	28. Label the "X" and "Y" axes and the polarity of each
	on the following coordinate lines:

(CONTINUE THIS FRAME ON NEXT PAGE.)

	29a.	(Cont)
		Vectors art from the of
29a. point	b.	To draw a vector correctly, the end of the vector that
origin		gives direction must have an
		drawn on it.
29b. arrowhead	C.	The angle which denotes the direction of vector rotation
		is measured from the axis to the vector.
29c. +X	d.	The number of degrees in the angle is measured
		from the
		(clockwise/counterclockwise)
		+X axis.
29d. counterclockwise	e.	A vector having a direction of 220° is in the
		quadrant.
29e. third or III	f.	A vector having a direction of 120° is in the
		guadrant.
29f. second or II	30.	Label the four quadrants formed by the following
		coordinate lines:
		I

30.	31. Vectors are straight lines that indicate both
IT I	and
111 IV	of a quantity.
31. magnitude	32. Two or more vectors can be added together and
direction	become a single vector, called the RESULTANT
	vector. Vectors on the same axis are added
	algebraically. For example, if you have two vectors,
	+ 3 and + 4, both on the X axis, their sum +7 is the
	value of the vector.
32. resultant	33. All vectors start from the point of origin. When they are
	on the same axis and pointing in the same direction,
	the resultant vector equals the ALGEBRAIC sum of the
	vectors. The vectors may be illustrated like this:
	Two vectors onTheir resultantthe same axis andvector:in same direction:
	+Y +5
	-X $+3$ $+3$ $+3$ $+X$ $-X$ $+X$
	The value of the resultant vector is
	on the X axis.

1-19

1-21

39. The resultant vector is positioned. Now, to add vectorially, the vectors are solved as sides of an equivalent right triangle. The drawings below show a vector diagram and is equivalent right triangle.

Vector diagram.

Right triangle.

The horizontal side of the right triangle is equivalent to the x vector (the vector drawn on the X axis).

Make a small x by the correct vector in the vector diagram above.

The vertical side of the right triangle is equivalent to the y vector (the vector drawn on the Y axis).

Make a small y by the correct vector in the vector diagram above.

The broken line on the vector diagram is an imaginary line that represents the y vector and is placed to indicate the vertical side of a right triangle.

Make a small (y) by the broken line on the vector diagram.

The hypotenuse of the right triangle is equivalent to the r vector (resultant vector).

Write the word, hypotenuse, by the correct side of the triangle above; then make a small r by the correct vector in the vector diagram.

39.	Did you label the right triangle and vector diagram like the ones below?						
	y		(y) Hypotenuse	Vertical side			
	2	۰ -	Horizontal side				
	Vector diagram).	Right triangle.				
		40a.	The vertical side of the right triangle is equivalent to	o the			
			vector.				
40a.	У	b.	The horizontal side of the right triangle is equivalen	t to the			
			vector.				
40b.	x	C.	The side of the right triangle opposite the 90° angle	is called the			
40c.	hypotenuse	d.	The hypotenuse is equivalent to the	vector.			
40d.	r (resultant)	41a.	In addition to having three sides, all triangles have	three angles.			
			The sum of these three angles is always 180°. In a	right triangle,			
			since one angle is 90°, the sum of the other two any	gles must equal			
41a.	90°	b.	If one of these two angles (other than the 90° angle	e) equals 30°, the			
			third angle equals				

41b. 60°
42. An easy way to solve for unknown sides and/or angles of a right triangle is to use trigonometry. Either of the two unknown angles in a right triangle can be found by dividing one known side by the other known side; then looking up their quotient (answer) in a Table of Natural Functions. In this table, angles (in degrees) are listed opposite the function values.

NOTE: For your convenience in solving trigonometry problems, the last page of this booklet has a Table of Natural Functions. Take a quick glance at it now; then continue on this page.

In trigonometry, the acute angles of a right triangle are called PHI (pronounced fi) and

THETA (pronounced that ta). Angle phi is formed by the hypotenuse and the vertical

side (altitude). Angle theta is formed by the hypotenuse and the horizontal side/base).

The symbol for phi is \emptyset and for theta is θ . The symbol \square means "angle phi" and \square means "angle theta."

On the drawing below, place the symbols for phi and theta beside the arc (ζ) that scribes the correct angle for each.

44. We will use three trigonometric functions in this program. One of these functions is the SINE function (abbreviated sin). The drawing below shows the sides used in solving for the sine function.

When solving for the sine of $2 \cdot 2$ the vertical side of a right triangle is the side

_____ the angle.

{0

1-25

50.	$\cos \theta_1$ = .5000					
	$\cos \theta_2 = .5000$					
51.	To find the number o	f degrees in 🖊 , aga	ain use the	trig table	s on page	1-59. This time,
	ao down the column	marked COS until th	ne cosine v	value 500	00 is found	d Opposite this
	ge down the oblamm					
	value, in the column r	narked DEG, you wil	I find the n	umber of	degrees in	<u>∠0</u> .
	When $\cos \theta$ = .5000, θ	/ 0 =				
51.	∠⊕ = 60°	Solution:	DEG	SIN	COS	
			• • • •	••••		
			59.0 59.5	.8572 .8616	.5150 .5075	
			60.0	.8660	.5000	
52.	The third trig function	n we use is the TAI	NGENT fur	nction (ab	breviated	tan). The sides
	used to solve for the	angent function are	labeled on	the drawi	ng below.	
				1		
				Side op	posite / 1	
	<i></i>	Side adjacent /-	Q	_ _		
	When solving for the	tangent of 🖽, you ι	use the side	e opposite	e and the s	ide
		the angle.				
1						

tan $\theta_2 = 1.0000$ 55. To find the number of degrees in $\angle \Theta$, turn to the trig tables. Tan θ in the preceding frame is 1.0000. Go down the column marked TAN until the tangent value is found Opposite this value, in the column marked DEG, you will find the number of degrees in $\angle \Theta$ NOTE: An angle less than 45° always has a tangent function less than 1; an angle greater than 45° always has a tangent function greater than 1. When tan $\theta = 1.0000$, $\angle \Theta = $ 55. Solution $\angle \Theta = 45^{\circ}$ DEG 44.0 44.0 44.0 6947 6947 6947 7193 7133 7133 79827					
 55. To find the number of degrees in ∠Φ, turn to the trig tables. Tan θ in the preceding frame is 1.0000. Go down the column marked TAN until the tangent value is found Opposite this value, in the column marked DEG, you will find the number of degrees in ∠Φ. NOTE: An angle less than 45° always has a tangent function less than 1; an angle greater than 45° always has a tangent function greater than 1. When tan θ = 1.0000, ∠Φ = 55. Solution ∠Θ = 45° DEG SIN COS TAN 44.0 .6947 .7193 .9657 .44.5 .7009 .7133 .9827 					
frame is 1.0000. Go down the column marked TAN until the tangent value is found Opposite this value, in the column marked DEG, you will find the number of degrees in $\underline{/ \Theta}$ NOTE: An angle less than 45° always has a tangent function less than 1; an angle greater than 45° always has a tangent function greater than 1. When tan θ = 1.0000, $\underline{/ \Theta}$ = 55. Solution $\underline{/ \Theta} = 45^{\circ}$ DEG SIN COS TAN 44.0 .6947 .7193 .9657 44.5 .7009 .7133 .9827					
Opposite this value, in the column marked DEG, you will find the number of degrees in $\underline{/ \Theta}$ NOTE: An angle less than 45° always has a tangent function less than 1; an angle greater than 45° always has a tangent function greater than 1. When tan $\theta = 1.0000$, $\underline{/ \Theta} = _$. 55. Solution $\underline{/ \Theta} = 45^{\circ}$ DEG SIN COS TAN 44.0 .6947 .7193 .9657 44.5 .7009 .7133 .9827					
$\angle \Theta$ NOTE: An angle less than 45° always has a tangent function less than 1; an angle greater than 45° always has a tangent function greater than 1.When tan $\theta = 1.0000$, $\angle \Theta = _$.55. Solution $\angle \Theta = 45^{\circ}$ DEG 44.0SIN .6947COS .7193TAN .9657 .9827					
NOTE: An angle less than 45° always has a tangent function less than 1; an angle greater than 45° always has a tangent function greater than 1. When tan θ = 1.0000, $f = $ 55. Solution $f \oplus = 45^{\circ}$ DEG SIN COS TAN 44.0 .6947 .7193 .9657 44.5 .7009 .7133 .9827					
When $\tan \theta = 1.0000$, $\angle \theta = _$. 55. Solution $\angle \Theta = 45^{\circ}$ DEG SIN COS TAN 44.0 .6947 .7193 .9657 44.5 .7009 .7133 .9827					
55. Solution ∠⊖ = 45° DEG SIN COS TAN 44.0 .6947 .7193 .9657 44.5 .7009 .7133 .9827					
<u>/⊖</u> = 45° DEG SIN COS TAN 44.0 .6947 .7193 .9657 44.5 .7009 .7133 .9827					
44.0 .6947 .7193 .9657 44.5 .7009 .7133 .9827					
45.0 .7071 .7071 1.0000					
56. You must be very, VERY careful when looking up numbers on the Table of Natura					
Functions. Here's why: You have a sin θ = .7133; therefore, $term$ = 45.5°. But suppose					
$\cos \theta = .7133;$ / $\Theta =$					
56. 44.5°, 35.5° 57a. You can see what would happen if you were looking for					
when the sin θ = .7133 and you happened to look in the wrong					
You can also make trouble for yourself by not going to the nearest half-degree wher					
the exact function value is not shown in the table. For example: $\cos \theta = .6657$; therefore, $\angle \Phi$					
= 48.5° instead of 48.0° because .6657 is closer to cosine of 48.5° than to the cosine of 48.0°.					
(CONTINUE ON NEXT PAGE)					

	Find the angles to the nearest 1/2 degree, using the functions given.					
	a. Sin θ = .2713	b. $\cos \theta = .70$	630 c.	Tan θ = .27	73	
	<u>/+</u> =	<u>/€</u> _=		∠⊕ =		
57a.	Answers:					
	a. /9 = 15.5°	b. 19 = 40.5	5° C.	/€ =15.5°		
	If you had trouble getting	g these values,	check your a	rithmetic. S	Seek help from the	
	instructor if necessary.					
57b.	And the function for the an	gles given.				
	a. 19 = 45°	b. /£ = 45.5°	с.	∠€ = 16.5°	•	
Sin 6) =	$\cos \theta = $		Tan θ =		
57b.	Answers.					
	a. Sin θ = .7071	b. $\cos \theta = .70$	009 c.	Tan θ = .29	062	
58.	Trying to memorize formula	as such as the t	rig functions ca	n be difficult	. However, you are	
	required to know them. As	s a memory "cru	utch," here is a s	saying that y	ou may use to help	
	you remember them: "Osca	ar <u>H</u> ad <u>A H</u> eap _r	<u>O</u> f <u>A</u> pples." Tak	the underl	ined capital	
	letters, and group them v	ertically as in	(Opposite	e) <u>0</u>	.=θ	
	the block to the right.	Each ratio is	(Hypotenus	use) H		
	equal to a trig function.	The functions	(Adiacent	n) A	= 0	
	are listed in the order i	in which you	(Hypoten	use) H		
	learned them. Complete the	ne formulas in				
	the block above by writin	ig the correct	t (Opposite)		=θ	
	function in each diank.		(Adjaceni	y #		

60a. x	b. The side opposite 🕰 in a triangle is represented by the	
r	vector.	

1-33

60b.	у	60c.	The side adjacent 🕼 in the triangle is represented by the
			vector.
60c.	x	d.	In a right triangle having vectors for the sides, the hypotenuse
			represents the vector.
60d.	(resultant) r	61.	Each time you work a trig problem, remember the saying:
			"_scar _adeap _fpples."
			Complete these formulas:
			$\underline{\qquad} \Theta = \underline{0} \\ H$
			$\Theta = \frac{A}{H}$
			$\Theta = 0$
61.	O, H, A, H,	62.	When working trig problems in this program, follow the
	O, A.		procedures listed below:
	sin		a. Take vector quantities no more than two decimal places.
	cos		b. Take trig functions to four decimal places.
	tan		c. Find degrees to the nearest 1/2°.

1-35

64. cos ⊖ = <u>94</u> 100	65.	Write the three commonly used trig functions and the formula for
$\cos 0 = .9400$		each:
<u>/⊖</u> = 20°		θ =
		Δ –
		0
		θ =
65. sin ⊖ = <u>opp</u> hyp	66.	On the vector diagram below, you are given values for the y vector
con ⊖ = adi hyp		and the x vector and will solve for 🖉. When the side opposite and
tan ⊖ = <u>opp</u>		the side adjacent are given, use the TANGENT function.
aoj		NOTE: These vectors are in the IV quadrant and are treated in the same manner as vectors in the first quadrant. In both quadrants, the angle θ is the angle between the x vector and the r vector; and the y vector is the side opposite.
		Solve for 20
		Use function
	-	formula: $\tan \Theta = \underline{y}$
1		Substitute in
84.3		+X values: $\tan \Theta =$
53.7	5	Solve problem:
55.7		$\tan \Theta = $
♥		Use trig tables:
		<u>/</u> <u>0</u> =
+Y		

easy to solve for the unknown sides of a right triangle when the angle θ and one side are known.

HERE IS THE PROCEDURE TO FOLLOW:

- a. Look the problem over to see what is given and what you are asked to find.
- b. Choose the function formula (sin, cos, or tan) that uses both the <u>given</u> values and the <u>unknown</u> value you are asked to find.
- c. Isolate the unknown quantity and place it to the left of the equal sign.
- d. Using the trig tables, solve for the unknown value.
- NOTE: Study these rules carefully. If you have trouble choosing the correct function formula In the remainder of this program, return to this page and restudy the rules.

	69.	It may help you to isolate the unknown quantity in the formula
		if you will compare the process with another process you
		already understand.
		Remember the "magic circle" for Ohm's law?
		E I R I R What is the formula if you wish to solve for E? Image: Content of the solution of the solu
602 E = IX R	h	What is the formula if you wish to solve for P2
	0.	
69b. R = E I	70.	Now, isolate I, as you did E and R in the preceding steps.
70. I=E	71.	After the unknown quantity has been isolated to the left of the
R		equal sign, substitute known values for the symbols to the
		right of the equal sign and solve mathematically.
		Solve for R, when $e = 100$ and $I = .2$
		Answer here.
		Solve for E when R = 250 and I = 4
		Answer here

72. y sin 0 r	73a. Look at magic triangle in the answer block at left. Write the formula when r is the unknown quantity.
73a. r = <u>y</u> sin ⊖	 Now, assume that y has become the unknown quantity. Isolate y.
73b. y = sin θ x r	c. Given the value of y and r, isolate the unknown. Write the formula in the space below.
73c. sin ⊖ = y r	74a. Write the function formula for tan θ .
74a. tan ⊖ = y x	b. Now, place the formula in a magic triangle.
74b. y tan-8 x	c. Look at your magic triangle. Isolate x; write the formula here.
74c. x =y tan ⊖	d. Isolate the unknown when tan $\boldsymbol{\theta}$ and \boldsymbol{x} are given.

1-46

94.	95. Solve for the y vector.	
	20	Y
	35°	~
	y V	
	-Y	
	y =	
95.	96a. Let's summarize. The trig functions discussed in this program ca	an
	be used to solve for unknown values in right triangles. Given a	ny
	two sides, 🖉 can be found. Given 🖉 and one side, the oth	ier
	two sides can be found. Recall the names applied to the sides of	fa
	right triangle complete the following statements:	
	a. The horizontal side of a right triangle is the	
	hypotenuse/base/altitude. (Circle one answer.)	
96a. base	b. When dealing with 🕰, the base is called the side	
	the angle.	
96b. adjacent		
		ľ

		96c.	The vertical side of a right triangle is the
			hypotenuse/base/altitude
96c.	altitude	96d.	When dealing with angle 🕰, the altitude is called the side
			the angle.
96d.	opposite	96e.	The side opposite divided by the hypotenuse is equal to the
			of / 🔁 .
96e.	sine	96f.	The side opposite divided by the side adjacent is equal to the
			of / 🔁 .
96f.	tangent	96g.	The side adjacent divided by the hypotenuse is equal to the
			of / 🔂 .
96g.	cosine	96h.	The vector sum of the x and y vectors is equal to the r vector.
			In an equivalent right triangle, the r vector is represented by
			the
			(which side?)
	h		10
96h.	nypotenuse	96i. 	Assume you are given the r vector and (, and are to solve
			for the y vector. Write the function formula:
			Isolate the unknown:

97. Now, let's apply some of the trig you have been learning to some of the machinery you will be working with.

You will recognize this drawing as a representation of a simple, basic generator. One conductor is shown rotating through the magnetic field.

The next drawing shows the same generator, enlarged and positioned on the page so the neutral plane is horizontal.

Let the neutral plane represent the X axis.

Label the neutral plane ... at left, +X at right.

96i.

Let an imaginary line through the strongest part of the magnetic field (between the exact centers of the pole pieces) represent the Y axis.

Label the heavy center line at top +Y. Label the heavy center line at bottom -Y. Now, with your pencil, extend the heavy center lines from top to bottom.

By adding the required lines and labels to the drawing, you have constructed coordinate lines and quadrants in a generator. Check the accuracy of your work on the next page.

98. At this time, your drawing on the previous page should look like the one shown below. Review these basic generator facts: **N**

Neutral plane

Conductor

orce

lines

When the conductor is in the neutral plane, <u>no</u> lines of forces are cut and zero voltage is induced in the conductor.

On the drawing at right, label the right end of the X axis 0°.

Label the left end of the X axis 180° .

When the conductor is at 90°, lines of force are cut at <u>maximum</u> rate and maximum voltage is induced in the conductor.

Label the top end of the Y axis 90°.

Label the bottom end of the Y axis 270°.

Label each end of the Y axis 100 volts (maximum voltage obtainable).

To complete the drawing, draw a line from the point of origin where the axes cross to conductor symbol.

This line forms a rotating vector; attach an arrowhead and label the line r.

Note: The length of the vector will coincide with the length of the y axis. At 90° , maximum voltage is generated. We have assumed 100 volts to be the maximum voltage this generator can deliver.

Label the length of the vector 100 volts.

Check the accuracy of your work on the next page.

99. Your drawing should now look like the one shown here.

Given these values for the generator drawing above, solve the instantaneous voltage of the conductor.

E_{max} = 100 volts.

(position of conductor) = 30^{\circ}.

Write the function formula

Isolate the unknown value

Substitute known values

Write your answer here.

99.	(Solution)	100. In this drawing, the conductor has rotated to 60°.		
	sin ⊖ = ¥ r	Drawing has been simplified for clarity.		
	y = sin θ x r y = .5000 x 100 y, or the symbol for instantaneous voltage) = 50.			
	E _{max} =100			
	/⊕ = 60°			
	Solve for the instantaneous voltage.			
	Write the function formula			
	Isolate the unknown			
	Substitute known va	ues		
	Write your answer h	ere		
100.	(Solution)	101. How much voltage will be induced in the conductor at 89°?		
	sin⊖=y r	Write your answer here		
	y = sin θ x r	How much voltage was induced in the conductor a 0°?		
	y = .8660 x 100	Write your answer here		
	y = 86.60			
	= 86.60 volts			

103. In this drawing, the conductor ha	s l							
rotated to 135°.								
How many degrees are in 29.	ny degrees are in LOP?							
(Answer here.)	Inswer here.)							
E _{max} =100 volts.	E _{max} =100 volts.							
What is the value of the	e 180°							
instantaneous voltage in the	e							
conductor ?	-Y 270°							
(Answer here.)								
Is it a positive or a negative value	?							
(Answer here.)								
103. 45° 104. Refer to the	e drawing above (frame 103):							
70.71 Draw in a c	onductor and the rotation vector at 190° . (Indicated by							
Positive the dot •).								
How many degrees are in / 0 , now? (A)	aswer here)							
What is the value of instantaneous voltage at the new position? (Answer here.)								
What will be the value of instantaneous voltage at 255°? (Answer here.)								
Are the instantaneous voltages found in these questions? (Answer here.)								

IT0350

104. 10°	105a. Refer to the drawing shown here. As counterclockwise rotation						
17.36	continues, the						
96.59	value of the						
No. (They	instantaneous						
	voltage in						
the conductor will							
(increase/decrease)							
The drawing shows the							
conductor rotation in the							
<u>first</u> / <u>second</u> / <u>third</u> / <u>fourth</u> quadrant of a generator. (Circle one answer.)							
105a. decrease	105b. E_{max} of the generator above is 100 volts. The conductor has						
fourth	rotated 330°.						
How many degrees are in 29 ? (Answer here.)							
105b. 30°	105c. What is the instantaneous voltage of the conductor in the						
	generator above?						
	(Answer here.); + or - ?						
105c. 50	105d. What is the value of instantaneous voltage at 330° if the ${\sf E}_{max}$						
-(neg)	of the generator is <u>220</u> volts?						
(109)	(Answer here.)						

105d. -110

106.

When all the instantaneous values of an alternating voltage or current (A.C.) are plotted on a time line, marked off in degrees of rotation, the result is a sine wave.

You will now be shown how to draw a graph of the sine function, commonly called a sine curve or sine wave.

When a resultant vector is rotated from 0° through 360° (four quadrant), the side opposite (y vector) increases from zero to maximum positive magnitude in the first quadrant; decreases from maximum positive magnitude to zero in the second quadrant; increases to maximum negative magnitude in the third quadrant; and, finally, decreases back to zero magnitude in the fourth quadrant.

This variation of the y vector can be seen by plotting the magnitudes of the y vector above or below the horizontal reference line (the X axis) for each degree of rotation of the resultant vector.

Keep in mind, as you progress through this objective, that the altitude, or magnitude of the side opposite (the y vector) represents e the INSTANTANEOUS value of a constantly changing voltage or current.

(CONTINUED ON NEXT PAGE)

106. (Contd.)

Figures \underline{A} and \underline{B} are sets of coordinate lines.

Figure <u>A</u> shows the four quadrants and a rotating vector.

Figure <u>B</u> shows an X axis marked off in degrees.

Notice, on figure \underline{A} , the varying magnitude (altitude, or height) of the arrowhead above the X axis. This height represents the magnitude of the y vector.

For each 15° rotation of the resultant vector in a counterclockwise direction, plot a point

above or below the corresponding degrees on the X axis of figure $_B_$.

The first four points have been plotted for you.

You are to plot the other points through one complete cycle (0° through 360°). You are then to draw a line, connecting the plotted points, to form a sine curve.

Figure <u>B</u>

Compare the circled positions 1, 2, 3 of the rotating vector with corresponding positions on the sine wave. You would get these same values by using trigonometry to solve for Y.

END OF LESSON.

IT0350

1-58

				TABLE C	F NATU	RAL FUN	CTIONS				
DEG.	SIN.	COS.	TAN.	DEG.	SIN.	cos	TAN.	DEG.	SIN.	COS.	TAN.
5	.0087	1,0000	,0087	30.5	.5075	.8616	.5890	60.5	.8704	A924	1.7675
1.0	.0175	.9998	.0175	31.0	.5150	.8572	.6009	61.0	.8746	A848	1.8040
20	.0202	,YYY/ 0004	.0262	31.5	5225	.5520	.0128	61.6	.8788	A772	1.8418
2.5	0436	.99990	D437	325	5373	8414	6171	625	.062Y	A095	1.6607
3.0	.0523	.9986	.0524	33.0	5446	.8387		63.0	.8910	4640	1.9210
3.5	.0610	.9981	.0612	33.5	.5519	.8339	.6619	63.5	.8949	A462	2.0057
4.0	.0698	.9 976	.0699	34.0	.5592	.8290	.6745	64.0	.8988	A384	2.0503
4.5	.0785	.9969	.0787	34.5	,5664	.8241	.6873	64.5	.9026	A305	2.0965
5.0	.0872		.0875	35.0	.5736	.8192	.7002	65.0	.9063	A226	2.1445
3.5	1045	.9934	1051	35.5	,580/ 5878	,8141	7945	00.0	.9100	A147	2.1943
65	1132	9036	1130	36.5	,36/6 8048	.0UYU 2010	7400	44 5	.9135	A067	2.2460
7.0	.1219	.9925	.1228	37.0	.6018	7986	7536	67.0	9205	398/	2.2796
7.5	.1305	.9914	.1317	37.5	.6088	7934	.7673	67.5	.9230	3827	2.3357
0.6	.1392	.9903	.1405	38.0	.6157	.7880	.7813	68.0	.9272	3746	2.4751
8.5	.1478	.9890	.1495	38.5	.6225	.7826	.7954	68.5	.9304	.3665	2.5386
9.0	.1564	.9877	.1584	39.0	.6293	J771	.6098	69.0	.9336	.3584	2.6051
9.5	.1650	.9863	.1673	39.5	.6361	.3716	.\$243	69.5	.9367	.3502	2.6746
10.5	.1/30	.7645	.1763	40.0	,6428	.7660	.6391	70.0	.9397	3420	2.7475
110	1908	.7033 0816	.1855	40.5	,0494 4543	./004 75.47	,5041 8403	70.5	.9426	.3338	2.6239
11.5	1994	.9799	2035	41.5	.0501 6626	7490	3847	71.5	.9433	3173	2.9042
12.0	2079	.9781	2126	42.0	6691	.7431	.9004	72.0	.9511	3090	2.900/
12.5	.2164	.9763	.2217	42.5	.6756	.7373	.9163	72.5	.9537	3007	3.1716
13.0	.2250	.9744	.2309	43.0	.6820	.7314	.9325	73.0	.9563	.2924	3.2709
13.5	.2334	.9724	.2401	43.5	.6884	.7254	.9490	73.5	.9588	.2840	3.3759
14.0	.2419	.9703	.2493	44.0	.6947	.7193	.9657	74.0	.9613	.2756	3,4874
14.5	2504	.9681	2586	44.5	.7009	.7133	.9827	74.5	.9636	2672	3.6059
15.6	2000	<u> </u>	20/9	49.0	7193	./0/1	1,0000	75.0	.9659	.2588	3.7321
16.0	2756	.9613	2167	46.0	.7193	./007	1.0176	76.0	.7081	2504	3,5007
16.5	2840	.9588	.2962	46.5	.7254	.6884	1.0538	76.5	.9724	2334	4.1653
17.0	292A	.9563	.3057	47.0	.7314	.6820	1.0724	77.0	.9744	2250	4.3315
17.5	.3007	.9537	.3153	47.5	.7373	.6756	1,0913	77.5	.9763	.2164	4.5107
18.0	.3090	.9511	.3249	48.0	.7431	.6691	1.1106	78.0	.9781	.2079	4.7046
18.5	3173	.9483	.3346	48.5	.7490	.6626	1.1303	78.5	.9799	.1994	4.9152
19.0	.3250	.9455	.3443	49.D	.7547	,656]	1.1504	79.0	.9816	.1908	5.1446
20.0	3420	,7420 0107	.334 i 3640	47.3 50.0	7640	,0474 6472	1 101#	19.5	.9633	.1622	5.3955
20.5	3502	.9367	3739	50.5	.7716	6361	1,2131	80.5	.9863	1/30	<u>3.0/13</u>
21.0	.3584	.9336	.3839	51.0	.3771	.6293	1.2349	a1.0	.9877	.1564	6.3138
21.5	.3665	.9304	.3939	51.5	.7826	.6225	1.2572	81.5	.9890	.1478	6.6912
22.0	.3746	.9272	.4040	52.0	.7880	.6157	1.2799	82.0	.9903	.1392	7.1154
22.5	3827	.9239	A142	52.5	.7934	8806.	1.3032	82.5	.9914	.1305	7.5958
23.5	3087	.7203	A245 4348	53.0	17980	5100, ·	1.32/0	63.0	.9925	.1219	1.1443
24.0	A067	.9135	A452	540	.8099	5878	1.3744	84.0	.7730	.1 132 1046	6.//QV 0 6144
24.5	A147	.9100	A557	54.5	.6141	5807	1,4019	84.5	0054	1000	10.39
25.0	A226	.9063	4663	55.0	.8192	.5736	1.4281	85.0	.9962	.0872	11.43
25.5	A305	.9026	A770	55.5	.8241	.5664	1,4550	85.5	.9969	.0785	12.71
26.0	.4384	.8988	A877	56.0	.8290	.5992	1.4826	86.0	.9976	.0698	14.30
26.5	A462	.8949	A986	56.5	.8339	.5519	1.5108	86.5	.9981	.0610	16.35
27.0 27 K	A540	.5910	,5095 6204	57.0	.6387	5446	1.5397	87.0	.9986	.0523	19.08
28.0	4405	.00/U JAR29	5317	57.5 58 n	8480	,53/3 5200	1,6007/	67.5 Man		,0436 0140	22.90
28.5	A772	.8788	.5430	58.5	.8526	.5225	1.6319	84.5	.9997	0262	38,19
29.0	A848	.8746	.5543	59.0	.8572	,5150	1.6643	89.0	.9998	.0175	57.29
29.5	A924	.8764	,5658	59.5	.3616	.5075	1.6977	89.5	1.0000	.0087	114.6
30.0	.5000	.8660	.5774	60.0	.3660	.5000	1.7321	90.0	1.0000	.0000	INF.

THIS PAGE LEFT INTENTIONALLY BLANK